plomb	potassiu	m calcium	cuivre	argent	Sodium	manganèse	baryum	Fer 3	Zinc
Pb ²⁺	K ⁺	Ca ²⁺	Cu ²⁺	Ag⁺	Na⁺	Mn ²⁺	Ba ²⁺	Fe ³⁺	Zn ²⁺
iodure	nitrate	hydroxyde	chlorure	sulfate	sulfur	e fluorure	carbon	ate	oxalate
- -	NO ₃ -	HO-	CI-	SO ₄ ² -	S ²⁻	F-	CO ₃ ²	<u>)</u> -	C ₂ O ₄ ² -

Exercice 1

La constante d'équilibre de solubilité du sulfate de calcium est $K_S = 2,5 \cdot 10^{-5}$ à 20° C; $M_{soluté} = 136,2$ g·mol⁻¹

- 1. Exprimer la constante d'équilibre de solubilité en fonction des la concentration des ions en solution. Montrer que la concentration des ions sulfate et calcium dans la solution saturée vaut $5.0 \cdot 10^{-3}$ mol·L⁻¹
- 2. En déduire la solubilité molaire du sulfate de calcium, puis calculer la solubilité massique du sulfate de calcium
- 3. Quel volume d'eau doit-on employer pour dissoudre complètement 2,72 g de sulfate de calcium

Exercice 2

La constante d'équilibre de solubilité de l'oxalate de calcium est $K_S = 3.6 \cdot 10^{-9}$ à 20° C ; $M_{solut\acute{e}} = 128.1$ g·mol⁻¹

- 1. Calculer la concentration des ions oxalate et calcium dans la solution saturée.
- 2. En déduire la solubilité molaire du sulfate de calcium, puis calculer la solubilité massique du sulfate de calcium
- **3.** Un malade souffre d'un calcul rénal (constitué d'oxalate de calcium) dont la masse est de 0,384 g. Quel volume d'eau doit-on employer pour le dissoudre complètement.

Exercice 3

Iodure de Plomb : $K_S = 8.10^{-9} \text{ à } 20^{\circ}\text{C}$; $M_{\text{soluté}} = 461,0 \text{ g} \cdot \text{mol}^{-1}$

On verse 2,00 g d'iodure de plomb dans un bécher contenant 100 mL d'eau. On mélange à l'aide d'un agitateur magnétique.

Peut-on dissoudre la totalité du soluté ?

Exercice 4

On réalise les 3 expériences suivantes :

- Exp 1 : En présence suffisante d'ions hydroxyde HO⁻, les ions Mg²⁺ forment un précipité blanc
- Exp 2 : En présence suffisante d'ions hydroxyde HO⁻, les ions Fe²⁺ forment un précipité vert
- Exp 3 : On ajoute goutte à goutte des ions Fe²⁺ dans un tube à essai contenant un précipité d'hydroxyde de magnésium Mg(OH)_{2(s)}. Le précipité prend une teinte verte dès les premières gouttes.
- 1. Écrire l'équation de la réaction mise en jeu lors de l'expérience 1
- 2. Écrire l'équation de la réaction mise en jeu lors de l'expérience 2
- 3. Écrire l'équation de la réaction mise en jeu lors de l'expérience 3
- **4.** Que peut-on conclure sur les valeurs des produits de solubilité de l'hydroxyde de fer (II) et de l'hydroxyde de magnésium ?