Les outils de physique-chimie que vous connaissez déjà

Dosage par étalonnage

- Un dosage par étalonnage consiste à déterminer la concentration d'une solution par comparaison d'une grandeur physique à une gamme d'étalonnage.
- On peut comparer par exemple la couleur de la solution à doser aux couleurs d'une **échelle de teintes** du même soluté, obtenue par dilutions d'une solution mère de concentration connue.

Trouver une masse molaire

- La masse molaire atomique d'un atome est donnée directement dans la classification périodique.
- La masse molaire moléculaire d'une molécule est obtenue en additionnant les masses molaires des atomes qui la constituent

La masse molaire

La masse molaire atomique M est la masse d'une mole d'atome. Elle est le coefficient de proportionnalité entre la quantité de matière n et la masse d'un échantillon m.

$$m=n\times M$$

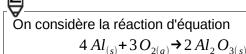
Elle s'exprime en g⋅mol⁻¹.

La concentration en quantité de matière de soluté

La concentration en quantité de matière de soluté C d'une solution est la **quantité de matière de soluté dissous par litre** de cette solution.

$$C = \frac{n}{V}$$

Elle s'exprime en mol·L-1.

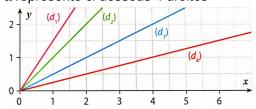

Vous devriez savoir faire ce type d'exercices

En vue du dosage d'une solution colorée on prépare l'échelle de teintes ci-dessous. La solution S₁ est utilisée pour préparer les autres.

Solution	S ₁	S ₂	S ₃	S ₄	S ₅
c (en mmol·L⁻¹)	20	16	12	8,0	4,0

- 1. Lister [e matériel nécessaire pour préparer 100 mL de solution $\mathbf{S}_{\!\scriptscriptstyle A}$
- 2. On veut utiliser cette échelle de teintes pour doser une solution de même soluté, de concentration c_0 inconnue, mais supposée proche de 0, 1 mol·L $^{-1}$.
- a. Pourquoi dilue-t-on dix fois cette solution avant de procéder au dosage ?
- b. La couleur de [a solution diluée est comprise entre la couleur de ${\rm S_2}$ et celle de ${\rm S_3}$ \cdot

Donner un encadrement de c_0 .



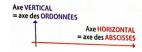
Parmi les mélanges initiaux ci-dessous, lesquels sont stœchiométriques ?

Mélange	Quantités de matière apportées			
	de Al	de O ₂		
1	120 mol	160 mol		
2	120 mol	90 mol		
3	160 mol	120 mol		
4	180 mol	135 mol		

On a représenté ci dessous 4 droites

Déterminer l'équation de la fonction linéaire associée à chacune d'elle

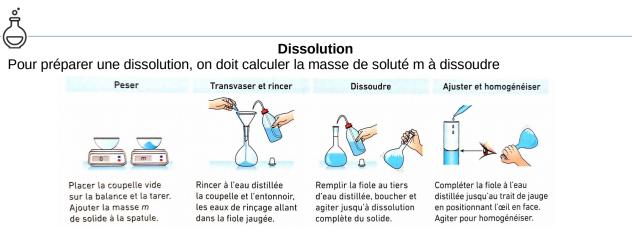
Les outils mathématiques dont vous allez avoir besoin



Tracer un graphique

Pour exploiter des résultats expérimentaux, on peut représenter l'évolution d'une grandeur étudiée (en ordonnées) en fonction d'une autre que l'on fait varier (en abscisses)

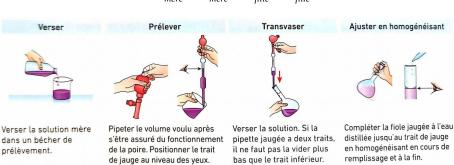
Au crayon à papier, après avoir orienté la feuille pour obtenir un graphique clair et lisible :


• Tracer, à la règle, les deux axes perpendiculaires orientés.

- Indiquer à l'extrémité de chaque axe la grandeur et l'unité
- Graduer régulièrement les axes en définissant pour chacun une échelle afin que toutes les valeurs s'étalent au maximum dans la zone du graphique.
- Placer les points en les représentant par des + (sans faire figurer les traits de construction)
- · Relier les points
- avec une règle, si les points sont aligné, en passant le plus près possible de tous les points pour tracer une droite « moyenne »
- à main levée, dans les autres cas, en lissant la courbe (sans tenir compte d'un point aberrant).
- Donner un titre au graphique

Évolution de y en fonction de x ou y=f(x).

Les techniques de manipulation que vous devez connaître

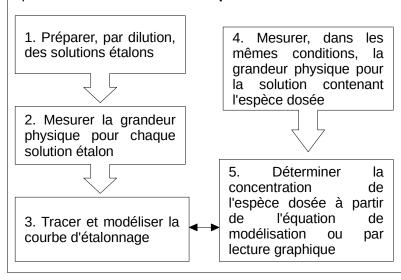


Dilution

Pour réaliser une dilution, on doit calculer le volume de solution mère à prélever en s'aidant de la formule

$$C_{mere} \times V_{mere} = C_{fille} \times V_{fille}$$

Les outils de physique-chimie que vous ne connaissez pas encore

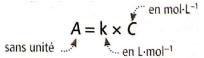

Dosage par étalonnage

Lors d'un dosage on détermine la **concentration** en quantité de matière ou en masse d'une espèce dans une solution.

Il s'agit de mesurer une grandeur donnée :

-pour des **solutions étalons** contenant la même espèce que celle dosée à des concentrations connues différentes

-pour la solution contenant l'espèce dosée.


Absorbance

L'absorbance d'une solution mesure sa capacité à absorber la lumière à une longueur d'onde donnée. C'est une grandeur sans unité.

La loi de Beer-Lambert

La loi de Beer-Lambert dit que l'absorbance d'une espèce chimique colorée est proportionnelle à sa concentration.

Cette loi est aussi valable avec la concentration en masse.

Rédiger un compte rendu de TP

- 1. Rédiger une introduction en reformulant, avec vos propres mots, l'objectif et la démarche adoptée
- 2. Présenter la démarche expérimentale.
- Si le protocole est donné, décrire brièvement la manipulation sans recopier l'énoncé.
- Si le protocole n'est pas donné :
 - inventorier la verrerie, le matériel et les solutions nécessaires à la manipulation;
 - lister les étapes successives de la manipulation à réaliser ;
 - préciser les mesures à réaliser.
- 3. **Présenter les résultats expérimentaux** sous la forme la plus judicieuse : schémas légendés, tableau de valeurs, graphique ou phrases concises.

Évaluer les incertitudes sur les mesures en précisant leur origine

- 4. **Interpréter les résultats expérimentaux** en les mettant en relation avec les connaissances ou les documents du TP, en exploitant le graphique, en calculant la grandeur recherchée, etc.
- 5. **Rédiger une conclusion** en validant ou non un modèle, en donnant la valeur et l'incertitude de la grandeur recherchée, en la comparant à une valeur de référence.

Commenter en portant un regard critique sur la démarche et les résultats. Proposer d'éventuelles pistes d'amélioration.