
Solvants et solutions

A Électronégativité des atomes

Développée par G. Lewis en 1932, elle représente la capacité d'un atome à attirer vers lui, les électrons d'une liaison covalente.

L'électronégativité augmente dans le tableau périodique, de la gauche vers la droite et de bas en haut.

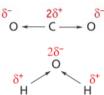
Ex : F plus électronégatif que Li Cl plus électronégatif que Cs

B Liaisons chimiques

Si la différence d'électronégativité entre les deux atomes d'une liaison est :

Faible : la liaison n'est pas polarisée
Différente : la liaison est polarisée
Très différente : l'espèce chimique est ionique
ex : liaison C—H dans CH₄
ex : liaison H—F dans HF
ex : liaison Na—Cl dans NaCl

C Les molécules dipolaires

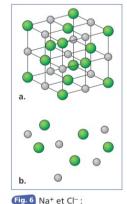

Dans le cas où les liaisons sont polarisées, la molécule peut être dipolaire ou non.

Si les liaisons polarisées se compensent : cas de CO₂

La molécule est symétrique : elle est apolaire

Si les liaisons polarisées ne se compensent pas : cas de H₂O

La molécule n'est pas symétrique : elle est dipolaire



D Mise en solution

1. Solution ionique

L'interaction entre le soluté (ex NaCl) et le solvant (ex H₂O) est électrostatique.

Il y a d'abord dissociation des ions puis solvatation des ions et enfin dispersion dans le solvant:

a. rassemblés dans le cristal ionique.b. dispersés en solution.

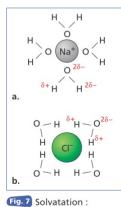


Fig. 7 Solvatation a. du cation Na⁺. b. de l'anion Cl⁻.

On peut établir l'équation de dissolution du soluté et dresser un tableau d'avancement pour connaître la concentration de chaque ion en solution

2. Solution moléculaire

La solvatation s'effectue par interaction de Van der Waals ou par liaison hydrogène.

- Une espèce chimique apolaire est soluble dans un solvant apolaire (ex héxane)
- Une espèce chimique polaire est soluble dans un solvant polaire (ex eau)