Fiche 1 - L'équilibre chimique

Exercice 1

- Quelle information générale obtient-on en observant l'ordre de grandeur de la constante d'équilibre ?

Exercice 2

Pour chacun des équilibres suivants, donner l'expression du quotient de réaction :

- (a) $C_6H_5CO_2H_{(aq)} + H_2O_{(l)} = C_6H_5CO_2^{-}_{(aq)} + H_3O^{+}_{(aq)}$
- **(b)** $C_2H_5NH_{2(aq)} + H_2O_{(l)} = C_2H_5NH_3^+_{(aq)} + HO^-_{(aq)}$
- (c) $Fe^{3+}_{(aq)} + 3 HO^{-}_{(aq)} = Fe(OH)_{3(s)}$
- (d) $I_{2(aq)} + 2 S_2 O_3^{2-}{}_{(aq)} = 2 I^{-}{}_{(aq)} + S_4 O_6^{2-}{}_{(aq)}$
- (e) $2 Ag^{+}_{(aq)} + Cu_{(s)} = 2 Ag_{(s)} + Cu^{2+}_{(aq)}$
- **(f)** $Al_2(SO_4)_{3(s)} = 2 Al^{3+}_{(aq)} + 3 SO_4^{2-}_{(aq)}$

Exercice 3

1) L'équation de la réaction entre les ions ammonium et les ions éthanoate est : $NH_4^+_{(aq)} + CH_3CO_2^-_{(aq)} = NH_{3(aq)} + CH_3CO_2H_{(aq)}$

La valeur de la constante d'équilibre de cette réaction est K = 3,98·10⁻⁵ à 25°C

- Donner l'expression de la constante d'équilibre K
- **2.1.** Donner l'équation de la réaction entre l'ammoniac NH₃ et l'acide éthanoïque CH₃CO₂H
- **2.2.** Calculer la constante d'équilibre K' de cette réaction

Exercice 4

1) On donne la réaction suivante : $H_{2(g)} + I_{2(g)} = 2HI_{(g)}$

Les concentrations à l'équilibre (à 395°C) sont les suivantes :

 $[H_2]_{eq} = 0.064 \text{ mol·L}^{-1}$; $[I_2]_{eq} = 0.016 \text{ mol·L}^{-1}$; $[HI]_{eq} = 0.250 \text{ mol·L}^{-1}$

- Calculer la valeur de la constante d'équilibre K de la réaction
- **2)** On donne la réaction suivante : $2 CO_{(q)} + 2 H_{2(q)} = CH_{4(q)} + CO_{2(q)}$

Les concentrations à l'équilibre sont les suivantes :

 $[CO]_{eq} = 4,3 \cdot 10^{-6} \mod L^{-1} \ ; \ [H_2]_{eq} = \ 1,15 \cdot 10^{-5} \mod L^{-1} \ ; \ [CH_4]_{eq} = \ 5,14 \cdot 10^{4} \mod L^{-1}; \\ [CO_2]_{eq} = \ 4,12 \cdot 10^{4} \mod L^{-1}$

- Calculer la valeur de la constante d'équilibre K de la réaction
- **3)** Soit la réaction suivante : $H_{2(g)} + Cl_{2(g)} = 2 HCl_{(g)}$

La constante d'équilibre est $K=4\cdot 10^{31}$; on a à l'équilibre : $[H_2]_{eq}=[Cl_2]_{eq}=10-16$ mol·L-1

- Calculer la concentration à l'équilibre du chlorure d'hydrogène HCl
- **4)** soit la réaction suivante : $3 H_{2(g)} + N_{2(g)} = 2 NH_{3(g)}$

À l'équilibre (à 500°C) on a : $[H_2]_{eq} = 0.250 \mod L^{-1}$ et $[NH_3]_{eq} = 0.050 \mod L^{-1 \mod L-1}$ La constante d'équilibre est $K = 6.0 \cdot 10^{-2}$

- Calculer la concentration de N₂ dans le mélange à l'équilibre

Exercice 5

A 250°C, le pentachlorure de phosphore se décompose partiellement en dichlore et en trichlorure de phosphore, selon la réaction : $PCl_{5(\alpha)} = Cl_{2(\alpha)} + PCl_{3(\alpha)}$

- 1) Donner l'expression du quotient de réaction
- 2) Le nombre de mole de pentachlorure de phosphore PCl_{5(g)} est : avant réaction : n_{PCI} (i) = 0,25 mol à l'équilibre : $n_{PCl}(eq) = 0.19 \text{ mol}$

- Établir un tableau descriptif de la réaction et en déduire les valeurs des quantités

- de matière des espèces présentes dans le milieu réactionnel à l'équilibre
- 3) Déterminer les concentrations des espèces à l'équilibre sachant que le volume total occupé par les gaz est de 0,5 L
- 4) Calculer la valeur de la constante d'équilibre

Exercice 6

Le peroxyde d'azote N₂O₄ se transforme en partie en dioxyde d'azote NO₂ selon la réaction $N_2O_{4(\alpha)} = 2 NO_{2(\alpha)}$

- 1) Donner l'expression du quotient de réaction
- 2) A 25°C, le nombre de mole initiale de N₂O₄ est de 0,100 mole ; à l'équilibre il est de 0.0844 mole.
- Établir un tableau descriptif de la réaction à l'équilibre en en déduire les valeurs des quantités de matière des espèces présentes dans le milieu réactionnel à l'équilibre
- 3) Déterminer les concentrations des espèces à l'équilibre sachant que le volume total occupé par les gaz est de 2,0 L
- 4) Calculer la valeur de la constante d'équilibre

Exercice 7

La réaction entre l'acide éthanoïque CH₃COOH et le méthanol CH₃OH forme un ester, l'éthanoate de méthyle CH₃COOCH₃ et de l'eau suivant la réaction : $CH_3COOH_{(1)} + CH_3OH_{(1)} = CH_3COOCH_{3(1)} + H_2O_{(1)}$

La réaction est athermique

Dans quel sens est déplacé l'équilibre si :

- On retire l'ester formé au fur et à mesure de sa formation ?
- On retire l'eau au fur et à mesure de sa formation ?
- On augmente la température de la réaction

Exercice 8

On considère l'équilibre suivant : $C_{(s)} + CO_{2(g)} = 2 CO_{(g)}$

- 1) Prédire l'effet sur la concentration du $CO_{2(q)}$ à l'équilibre si on diminue la concentration de CO
- 2) Doit-on augmenter ou diminuer le volume total du mélange en vue d'augmenter le rendement de la

transformation du carbone et du dioxyde de carbone en monoxyde de carbone?

Exercice 9

Pour les réactions suivantes l'équilibre dépend-il de la pression ? Si oui, indiquer le sens de déplacement de l'équilibre lorsque l'on augmente la pression

- (a) $N_{2(g)} + 3 H_{2(g)} = 2 NH_{3(g)}$
- **(b)** $H_{2(g)} + I_{2(g)} = 2 HI_{(g)}$
- (c) $2 CO_{(g)} + O_{2(g)} = 2 CO_{2(g)}$
- **(d)** $N_2O_{4(q)} = 2 NO_{2(q)}$
- (e) $C_{(s)} + CO_{2(q)} = 2 CO_{(q)}$