Configurations électroniques

Le script ci-dessous définit une fonction qui reçoit comme argument un numéro atomique inférieur à 18 et renvoie la configuration électronique correspondante. Une fois le script exécuté, il suffit d'appeler la fonction dans la console Python.

def configuration(Z): config =" " #Création de la variable configuration de type chaîne de caractères "string" if Z <= 2 : # condition de type if (si..) config = "(1s)" + str(Z) #la variable configuration renvoie à la chaîne de caractère (1s) suivi du caractère associé à Z elif Z <=4 : # elif est la contraction de else if (sinon si ..) config = "(1s)" + str(2) + " (2s)" + str(Z-2) elif Z <= 10 :</pre>

elif Z <= 10 : config = "(1s)" + str(2) + " (2s)" + str(...)+ " (2p)" + str(...) print("La configuration électronique de l'atome de numéro atomique",Z,"est:", config) # écriture du résultat return

Remplacez les ... par ce qui convient pour permettre d'afficher la configuration électronique des éléments jusqu'à Z = 10 puis complétez ce script pour aller jusqu'à Z = 18.

Prépa admissibilité CAER

Spé Terminale

Tracé des courbes d'évolution des quantités de matières des espèces chimiques lors d'un titrage

(D'après Physique-Chimie Terminale – Hatier avril 2020)

On titre un volume $V_1 = 20,0$ mL d'une solution de sulfate de fer (II) par de concentration $c_1 = 0,10$ mol.l⁻¹ par une solution d'hydroxyde de sodium de concentration $c_2 = 0,25$ mol.L⁻¹. On obtient alors un précipité d'hydroxyde de fer (II). 1) Établir l'équation de la réaction support du titrage. 2) Identifier les ions spectateurs. 3) Rappeler la définition de l'équivalence. 4) Exprimer puis calculer la valeur du volume équivalent V_E attendu. 5) Exprimer puis calculer la quantité de matière des espèces en solution dans le mélange réactionnel pour un volume de solution titrante versé égal à :

a) V = 0 mLb) $V = V_E$

c)
$$V = V_{max} = 25 \text{ mL}$$

6) Le programme ci-contre permet de tracer l'évolution de la composition du mélange réactionnel.

a) Compléter le programme afin qu'il calcule le volume équivalent du titrage.

b) Compléter le programme pour qu'il fournisse les listes nhydroxyde, nfer et nproduit contenant chacune trois valeurs de quantité de matière pour : $V = 0 \text{ mL}, V = V_E \text{ et } V = V_{max} = 25,0 \text{ mL}.$

c) Exécuter le programme et enregistrer le graphique.

7) Modifier le programme pour qu'il permette de visualiser également les quantités de matière des ions spectateurs.

import matplotlib.pyplot as plt

print("* Quantités de matière et titrage *") print("* Réaction support du titrage : *") print("* *") Fe2+ + 2HO- --> Fe(OH)2 print("") print("Attention : le séparateur décimal est le point") print("") c1=0.1 # Concentration solution titrée en mol/L V1=20.0 # Volume de solution titrée en mL c=0.25 # Concentration solution titrante en mol/L Vmax=25.0 # Volume maximal affiche en mL # Calcul du volume équivalent en mL Ve= ### Listes des quantités de matière, en mol ### [initiale, à Veq, à Vmax] ### HOnhydroxyde= ### Fe2+ nfer= ### Fe(OH)2 nproduit= V=[0,Ve,Vmax] ### Ecriture des résultats print("") print("Volume équivalent :",round(Ve,2),"mL") ### Trace du graphique plt.plot(V,nhydroxyde,"r",label="Réactif titrant HO-") plt.plot(V,nfer,"b",label="Réactif titré Fe2+") plt.plot(V,nproduit,"g",label="Produit Fe(OH)2") plt.xlabel("V (mL)") plt.ylabel("quantités de matière (mol)") plt.legend() plt.grid(True) plt.show()

Représentation de vecteurs vitesse et accélération

En reprenant les exercices préparatoires 1 et 2, on peut représenter, pour chaque position le vecteur vitesse à l'aide de la fonction suivante :

Pour faire afficher le graphique, il faut ensuite ajouter l'instruction **plt.show()** en fin de programme.

1) Comme indiqué en vert, cette fonction utilise l'instruction plt.quiver pour tracer une flèche.

a) Quelle est la signification de la ligne : for i in range(len(vx)):

b) Pourquoi l'instruction quiver utilise-t-elle tantôt les indices [i+1] et [i] ?

2) Proposer une fonction permettant de calculer les coordonnées du vecteur accélération du système.

3) Proposer une fonction permettant de représenter le vecteur accélération.

Tracé du diagramme de distribution d'un acide faible

On veut utiliser un script Python pour tracer le diagramme de distribution d'un acide faible. Cet acide faible sera noté AH et sa base conjuguée sera notée A⁻.

- 1) Etablir l'équation de la réaction entre cet acide faible et l'eau et donner l'expression de la constante d'acidité.
- 2) En déduire l'expression du rapport [A⁻]/[AH].
- 3) Exprimer le pourcentage de forme basique A⁻ dans le mélange, ainsi que le pourcentage de forme acide AH .
- 4) Compléter la partie « Calculs préliminaires ».
- 5) Compléter la partie « Tracé du diagramme » en traçant le pourcentage de forme basique et de forme acide en fonction du pH. Attribuer aux axes les noms « pH » et « % ».

import matplotlib.pyplot as plt import numpy as np pKa = 3.75 def diagramme(pKa):	# Valeur du pKa de l'acide étudié (ici, l'acide méthanoïque)
##### Calculs préliminaire pH = np.arange(0,14.1,0.5) R = P_base = P_acide =	<pre>s ####################################</pre>
##### Tracé du diagramm	e ####################################
plt.figure (figsize = (8,4))	 # Fixe les dimensions du graphique # Tracé du pourcentage de forme basique en fonction du pH # Tracé du pourcentage de forme acide en fonction du pH # Nom de l'axe des abscisses # Nom de l'axe des ordonnées
plt.legend() plt.grid() plt.title (<mark>"Diagramme de distr</mark> plt.show() return	ibution d'un couple acide faible/base faible")
diagramme (pKa)	

Pour produire un son avec un microcontrôleur Arduino, on réalise le montage suivant :

Connecter la breadboard à la carte Arduino en reliant la résistance à la masse (pin GND) et le buzzer au pin 3. Une fois les circuit réalisé, connecter la carte Arduino à l'ordinateur et téléverser le programme Prod_son.ino situé dans le dossier de la classe.

Le code de ce programme est donné ci-dessous.

Ce code est commenté pour vous permettre de comprendre le rôle de chaque instruction.

void satur()	// Cotto partia du codo s'avéguto una coulo fois ou longement du programma
void setup()	// Cette partie du code s'execute une seule fois au fancement du programme
pinMode(3.OUTPUT):	// On déclare le pin 3 comme étant une borne de sortie
)	
}	
void loop()	// Cette partie du code s'exècute en boucle
{	
digitalWrite(3,LOW);	// Le pin 3 est fixé à l'état bas, c'est à dire à une tension de 0 V
delayMicroseconds(1136);	// On attends 1136 microsecondes
digitalWrite(3,HIGH);	// Le pin 3 est fixé à l'état haut, c'est à dire à une tension de 5 V
delayMicroseconds(1136)	// On attends 1136 microsecondes
}	
delayMicroseconds(1136); }	// On attends 1136 microsecondes

Code de programmation

Commentaires

1) Qu'observez-vous une fois le code Arduino téléversé ?

2) Représenter l'allure de la tension fournie par la carte Arduino en fonction du temps.

3) Déterminer la période puis la fréquence du son produit.

- 4) Comment modifier le code pour entendre un son de fréquence f' = 523,25 Hz.
- 5) Modifier le code et observer.

6) À la fin du TP, vider la mémoire du microprocesseur en téléversant un programme vierge.

Capteur de lumière

Il existe de nombreux dispositifs d'éclairage automatique qui s'allument lorsque la nuit tombe. Quel dispositif permet ce fonctionnement autonome ? ARDUINO

Doc 1 : La photorésistance

Une photorésistance, appelée aussi LDR (Light Dependent Resistor), est un dipôle dont la valeur de la résistance varie en fonction de l'intensité de la lumière qu'il reçoit. La valeur de la résistance diminue lorsqu'elle est éclairée et elle est maximale en l'absence de lumière.

Les LDR sont couramment présentes dans de nombreux circuits électroniques, en particulier dans les alarmes, les horloges, les luminaires...

Doc 2 : Montage expérimental :

Les possibilités offertes par le microcontrôleur sont utilisées pour réaliser un circuit où une photorésistance commande l'allumage d'une diode en fonction de l'intensité lumineuse ambiante. Ce circuit est généralement appelé interrupteur

crépusculaire et se présente de la façon suivante.

 Le montage ci-dessus est déjà partiellement réalisé :

la LED et la résistance R2 ont déjà été connectés à la breadboard et au microcontrôleur. Compléter le montage en plaçant la photorésistance et la résistance R₁.

Doc 3 : Approche de programmation de microcontrôleur Arduino

On utilise le programme ci-dessous et le microcontrôleur Arduino pour réaliser un circuit.

1	// définition et initialisation des variables	
2	int analogPin = 0 ; //utilisation de l'entrée A0	
3	int ledPin = 9; //utilisation du pin 9 pour connecter la LED	
4	int Valeur = 0 ;	
5	float Tension = 0 ;	
6		
7	void setup() {	
8	Serial.begin(9600); // connexion carte-ordinateur	
9	pinMode(ledPin, OUTPUT) ; // le pin connecté à la LED est une sortie digitale	
10	digitalWrite(ledPin, LOW) ;	
11	}	
12		
13	void loop() {	
14	//mesure de la valeur pour l'entrée analogique A0	
15	Valeur = analogRead(analogPin);	
16	Tension = Valeur*5.0/1023 ; // calcul de la valeur de la tension	
17		
18	Serial.print(Tension);	
19	Serial.println(" V");	
20	delay (1000); //1000 ms entre deux mesures successives	
21		
22	// choix du seuil de basculement de la LED ici 3,5 V	
23	if (Tension < 3.5) {	
24	digitalWrite(ledPin, LOW) ;	
25	}	
26	else{	
27	digitalWrite(ledPin, HIGH);	
28	}	
29	}	
		-

- 2) Téléverser le programme dans le microcontrôleur et vérifier qualitativement que le dispositif obtenu fonctionne comme un interrupteur crépusculaire.
- Prévoir comment varie la valeur de la résistance de la LDR (notée R_{LDR}) si la luminosité diminue. 3)
- 4) Dans ce circuit, U_{LDR} varie dans le même sens que R_{LDR}. Comment doit varier la tension U_{LDR} aux bornes de la photorésistance quand l'éclairement diminue ? Vérifier en masquant la LRD et en notant les valeurs de tensions U_{LDR} pour différents éclairements (pleine lumière, légère ombre, obscurité).
- 5) Pour déclencher l'allumage de la LED, le microcontrôleur Arduino mesure la tension entre les bornes de la photorésistance. Ouvrir le "Moniteur Série" Arduino et visualiser la tension mesurée par le microcontrôleur.
- Déterminer la valeur de la tension U_{LDR} à partir de laquelle la diode s'éclaire. Cette valeur est-elle cohérente avec la valeur de 6) seuil donnée dans le programme (doc. 3)?
- a) Comment modifier le programme pour qu'une ombre légère suffise à provoquer l'allumage de la LED. 7) b) Effectuer la modification et vérifier que la nouvelle valeur de seuil choisie est bien respectée.
- 8) La partie détection du montage peut être schématisée ainsi :
 - La tension $U_{PN} = 5,0$ V est la tension fournie par le microcontrôleur.
 - a) Exprimer littéralement la valeur de la tension U_{AB} en fonction de U_{PN} et de ULDR. Justifier en explicitant la loi utilisée.
 - b) En supposant U_{LDR} = 3,5 V, déterminer la valeur de U_{AB} .
 - c) En déduire, en justifiant, la valeur de l'intensité traversant la résistance R₁ et la photorésistance.
- 9) Dans la seconde partie du montage, déterminer par une mesure de tension, l'intensité traversant la LED lorsque celle-ci est allumée.

ę

Tracé du diagramme de distribution d'un diacide

Le programme suivant permet de tracer le diagramme de distribution de l'acide méthanoïque.

Adaptez ce programme pour qu'il puisse tracer le diagramme de distribution d'un diacide faible comme l'acide carbonique (pKa1 = 6,37 et pKa2 = 10,32).